Pancreatitis -Feedings and Genetics

KM Ellery et al. J Pediatr 2017; 191: 164-9.  This prospective pediatric study examined 30 patients with mild acute pancreatitis in a “patient-directed nutrition” (PDN) pathway using a low fat diet and compared to a historical control of 92 patients in a “treatment team-directed nutrition” (TTDN) pathway. In the PDN group, patients were allowed a low-fat oral diet (<5 g fat per entrée, <1 g fat per snack, and only 1 entrée or snack at a time) at the time of admission.

Key findings:

  • PDN group had median length of stay of 48.5 hours compared with 93 hours for the TTDN group
  • PDN group was NPO for median of 14 hours compared to 34 hours for TTDN group
  • No patients in the PDN group had complications within 30 days of discharge

Y Xiao et al. J Pediatr 2017; 191: 158-63.  Among 55 pediatric patients with chronic pancreatitis and 14 with acute recurrent pancreatitis, there were 45 and 10 patients respectively who harbored 1 or more mutations in pancreatitis-associated genetic disorders: PRSS1, SPINK1, CFTR, CASR, CTSB, CTRC, KRT8

My take: These two studies indicate that oral feeding in mild acute pancreatitis leads to shorter hospital stays and that pediatric patients with chronic pancreatitis and acute recurrent pancreatitis frequently have predisposing genetic mutations.

Related blog posts:

Near Bright Angel Trail, Grand Canyon

 

Recurrent pancreatitis and genetic underpinnings

While the absolute number of patients with genetic causes of pancreatitis is small, due to frequent hospitalizations, this remains a significant problem.  This month additional information on genetic predisposition for pancreatitis is available (JPGN 2012; 54: 645-50).

Sultan et al (Milwaukee, WI) reviewed the charts of children <18 years with recurrent acute pancreatitis (RAP) and patients with chronic pancreatitis (CP) from 2000-2009.   RAP was considered if patient had a minimum of two distinct episodes of acute pancreatitis.  Acute pancreatitis was considered the diagnosis if patient had typical symptoms associated with 3-fold elevation of amylase or lipase or imaging changes consistent with acute pancreatitis. CP was defined as a minimum of 2 episodes of acute pancreatitis associated with pancreatic duct abnormalities or pancreatic insufficiency.

Among this cohort of 29 children, 23 (79%) had mutations which have been associated with genetic pancreatitis (GP).  Family history was positive in only five patients.

  • CFTR mutation in 14 (48%): two had homozygous mutations, six heterozygous, and four had 5 T variants.  The importance of a single CFTR mutation in contributing towards pancreatitis is unclear.  However, the Wisconsin population has a carrier frequency of 1:32; the striking difference in frequency  indicates that even a single mutation may be important in the pathogenesis of RAP.
  • SPINK1 (serine protease inhibitor Kazal type 1) in 8 (27%).  SPINK1 mutations occur in 1-3% of the general population.  It is often a modifying factor rather than an isolated causal factor in the development of RAP.  Four of the patients with SPINK1 mutations also had a CFTR mutation.
  • PRSS1 (cationic trypsinogen gene) in 7 (24%).  Individuals with these mutations are considered to have hereditary pancreatitis, an autosomal disease with incomplete penetrance.
  • Only one patient was tested for chymotrypsin C gene (CTRC) –tested negative.

Seven patients with RAP did not undergo genetic testing & were excluded from the study.  These patients had other known causes of RAP: 3 had gallstones, 2 had pancreas divisum, 1 had a metabolic disorder, and 1 had a medication-induced pancreatitis.  The authors note, however, that patients with pancreas divisum have had genetic mutations identified in other studies.

Additional References:

  • www.uni-leipzig.de/pancreasmutation. This link will take you to the hereditary pancreatitis database where you can search for the specific mutation you identified and find articles dealing with a variety of aspects of that particular mutation.
  • 2011 Naspghan Postgraduate Course:
    Pancreatitis Workup
    -1st bout, check U/S, trig
    -if 2nd bout, suggested to check MRI, genetics (SPINK1, PRSS1, CFTR), sweat test, fecal elastase, possibly IgG4/ANA
  • OMIM#167800/276000
  • -Gastroenterology 2006; 131: 1844.  Mouse model w R122H Trypsiongen expression.
  • -Whitcomb DC. Gut 2004; 53: 1710-17. test for PRSS1 (cationic trypsinogen), SPINK1 (Serine protease inhibitor, Kazal Type 1), and CFTR gene.
  • -JPGN 2002; 34: 1A pg 444. n=108 with hereditary or idiopathic pancreatitis. (28% had + fhx)  12 c PRSS1 mutation, 24 c SPINK1 (21 s fhx); 22 had + CFTR mutation.
    -Pancreatology 2001; 1: 405-415.  Consensus guidelines for testing for H. Pancreatitis. PRSS1 gene -cationic trypsinogen
    http://www.pancreas.org/assets/pdfs/Pancreatology/HPgeneTestConsensus.pdf
  •  David Whitcomb’s laboratory at the University of Pittsburgh. The test is commercially available there. Their web site for the forms is:
    http://www.pitt.edu/~whitcomb/HPINFO/MolGenTest.html
  • -JPGN 2011; 52: 262. Review.
  • -J Pediatrics 2011; 158: 612.  Acute pancreatitis can result in diabetes.
  • -Clin Gastro & Hep 2010; 8: 410-416, 417. REVIEW of acute pancreatitis.  Rec NJ generally over TPN.
  • -Clin Gastro Hep 2010; 8: xxii.  Anomalous pancreatobiliary jxn as a cause.
  • -JPGN 2009; 49: 137.  Pancreatitis assoc w celiac
  • -Clin Gastro & Hep 2009; 7: 702.  Harmless Acute pancreatitis score.  Nonsevere when NL hgb, NL creatitine, and no rebound tenderness/guarding
  • -Alim Pharm Ther 2008; 28: 777-781.  Use of a low fat diet helped shorten hospital stay among adult pts with acute pancreatitis.
  • -Clin Gastro & Hep 2008; 6: 1070, 1077.   Fluids and imaging in acute pancreatitis.  With imaging, CT probably best.
  • – J Pediatrics 2008; 152: 106.  Acute pancreatitis in young children

Related blog entry:

Indomethacin to prevent post-ERCP pancreatitis