Big Advance for Hepatitis B, Plus One

A recent open-label randomized controlled study (M Bazinet et al. Gastroenterol 2020; 158: 2180-94https://doi.org/10.1053/j.gastro.2020.02.058) showed that the addition of nucleic acid polymers (NAPs) which inhibit assembly and secretion of hepatitis B virus (HBV) subviral particles significantly improved outcomes in a phase 2 HBV trial (n=40).

Full text: Safety and Efficacy of 48 Weeks REP 2139 or REP 2165, Tenofovir Disoproxil, and Pegylated Interferon Alfa-2a in Patients With Chronic HBV Infection Naïve to Nucleos(t)ide Therapy

NAP therapy was administered intravenously once a week.

Key findings:

  • During the first 24 weeks of tenofovir (TDF) and peg-Interferon (pegIFN) administration, significantly higher proportions of patients in NAP groups had decreases in HBsAg to below 1 IU/mL (P < .001 vs control) and HBsAg seroconversion (P = .046 vs control).
  • At the time patients completed the TDF + pegIFN + NAP regimen, HBsAg levels were 0.05 IU/mL or lower in 24/40 participants
  • During 48 weeks of treatment-free follow-up, virologic control persisted in 13 of 40 participants (2 lost to follow-up after 24 weeks), whereas functional cure persisted in 14 of 40 participants (all completing 48 weeks of follow-up) with persistent HBsAg seroconversion

The associated editorial (pg 2051-4 by D Durantel, T Asselah) makes the following points:

  • The authors call for larger multicenter studies with longer followup.  They note that more evaluation is needed to determine if seroconversion is sustained.
  • It remains unclear whether PEG-IFN is needed. TDF/NAP therapy without PEG-IFN was not studied.
  • They state that more information about flares during treatment are needed.  In this study, flares were safe and associated with beneficial outcomes.  It is not clear if therapy flares would be detrimental in those with advanced fibrosis.
  • Optimistically, they state that there are multiple competing therapies being studied (eg. small interfering RNA, and small molecule HBs-RNA destabilizer) which could be more easily administered.

My take (borrowed from authors): In a phase 2 randomized trial, “we found that addition of NAPs to TDF + pegIFN did not alter tolerability and significantly increased rates of HBsAg loss and HBsAg seroconversion during therapy and functional cure after therapy.”

A related commentary (Gastroenterol 2020; 158: 2028-32) calls for investment/study of treatment for immune-tolerant patients along with curative therapy when it becomes available.  The authors also argue for a study of long-term viral suppression with either entecavir or tenofovir alafenamide.

Plus one: N Rodriguez-Baez et al. JPGN 2020; 71: 99-105.  This study examined liver histology from 134 liver biopsies from treatment-naive children with chronic hepatitis B infection. 60% acquired infection vertically, 69% were HBeAg-positive.   Interface hepatitis was mild in 31%, moderate in 61% and severe in 6%; lobular inflammation was mild in 54%, moderate in 29% and severe in 7%. Fibrosis: 18% had no fibrosis, 59% had portal fibrosis without bridging, 19% had bridging fibrosis and 4% had cirrhosis. Alanine amnotransferase was a fairly good indicator of the severity of hepatic inflammation and extent of fibrosis.

Related blog posts:

Is Tenofovir the Best Medication for Hepatitis B Infection?

Two recent studies have suggested that tenofovir may be more effective for hepatitis B virus (HBV) infections.

  • T C-F Yip et al. Gastroenterol 2020; 158: 215-25.
  • J Choi et al. JAMA Oncol 2019; 5: 30-6. (Reviewed in a commentary by P Lampertico, M Colombo. Gastroenterol 2019; 157: 1682-88)

In the first retrospective study from Hong Kong, the authors analyzed 29,350 consecutive treated-patients  (mean age 52.9 years).  1309 were treated with tenofovir disoproxil fumarate (TDV) and 28,041 were treated with entecavir. Key findings:

  • TDF-treated patients were younger (mean age 43.2 years vs. 53.4 years) and had less cirrhosis at baseline (2.9% vs. 13.6%).
  • After a median follow-up of 3.6 years, 8 TDF-treated patients (0.6%) and 1386 (4.9%) of entecavir-treated patients developed hepatocellular carcinoma (HCC).  The authors note that TDF maintained a lower rate of HCC after propensity score weighting (hazard ratio of 0.36)

The second study was a nationwide population cohort database with >24,000 patients –all with ALT >80. Key finding:

  • HCC was significantly lower in TDF group than in the entecavir group, the percent person-years being 0.64 compared to 1.06; though, there was not a lower mortality rate or a lower liver transplantation rate.

The commentary associated with the latter study makes the following points:

  • Both TDF and entecavir could prevent “the incidence and mortality of HCC …in >85% of patients who received [them] for years.”
  • Studies comparing TDF and entecavir have come up with conflicting results.  “Three studies in Korea, the U.S, and Europe reported no differences between NAs even after patient matching by a propensity score.”
  • “Cumulatively, all these studies deliver the reassuring message of a robust risk reduction of liver cancer taking place in patients with chronic hepatitis B who experience prolonged virus suppression after NA therapy, but currently they fail to provide convincing evidence that one NA is superior to the other one in determining such clinical benefit.”

My take: Tenofovir may be better but the answer is not definitive; due to lack of randomization, there may still be confounding variables in which sicker patients are receiving entecavir and this could be contributing to the difference in outcomes.  Also, in patients with bone disease and renal impairment, tenofovir alafenamide (TAF) or entecavir is recommended.

Related blog posts:

From P’tit Train Du Nord Linear Park

Liver Briefs -June 2019

YH Yeo et al. Hepatology 2019; 69: 1385-97.  The prevalence of high risk individuals in the U.S. who are susceptible (not immune) to hepatitis B has decreased from 83% to 69% from 2003 to 2014.  That still leaves 64 million who would benefit from HBV vaccination.

M Sharma et al. Hepatology 2019; 69: 1657-75. This meta-analysis compared therapies for primary prevention of esophageal varices and concluded that nonselective beta-blocker (NSBB) monotherapy may decrease all-cause mortality and carried a lower risk of serious complications than variceal band ligation (VBL). However, the commentary (1382-84 by L Laine) reaches a different conclusion. “Current recommendations for primary prevention with VBL or NSBB or carvediolo still appear to be acceptable…using a shared decision-making approach” to weigh issue such as daily medication or periodic endoscopy.

J Nguyen et al. J Pediatr 2019; 207: 90-6. This study modeled the cost-effectiveness of early treatment with direct-acting antiviral therapy in adolescents with hepatitis C infection.  With pangenotypic agenst, the cost would be $10000 to $21000 per QALY gained.

S Trinh et al. Clin Gastroenterol Hepatol 2019; 17: 948-56. This retrospective hepatitis B study examined the changes in renal function between 239 tenofovir disoproxil fumarte (TDF) treated patients and 171 entecavir treated patients.  Key finding: TDF was not associated with higher risk of worsening renal function in this cohort with a mean followup of 43-46 months in patients with baseline normal renal function.  In patients with renal impairment, deterioration of renal function was noted in TDF-treated patients.  Thus, TDF should be avoided in patients with impaired renal function.

 

Rhododendrom in Sandy Springs

.

Comprehensive 2018 AASLD Guidance for Chronic Hepatitis B

NA Terrault et al. Hepatology 2018; 67: 1560-99. Here’s the full link: Update on Prevention, Diagnosis, and Treatment of Chronic Hepatitis B: AASLD 2018 Hepatitis B Guidance

Some of the key points:

Table 4 (pg 1565): provides a refresher on interpretation of serology

Table 5 (pg 1567): Children and Adults Who Are HBsAg Positive:

  • Can participate in all activities, including contact sports
  • Should not be excluded from daycare or school participation and should not be isolated from other children
  • Can share food and utensils and kiss others

Figure 1 (pg 1571) Treatment algorithms.

  • For both HBsAg-positive/HBeAg-positive and HBsAg-positive/HBeAg-negative patients, treatment is recommended if ALT ≥2 x ULN.
  • For both groups, treatment is NOT recommended for those with ALT ≤ULN and low HBV DNA levels (<20,000 IU/mL for HBeAg-positive and <2,000 IU/mL for HBeAg-negative).
  • In those who do not fall into these categories, ongoing monitoring is recommended

Figure 1 from AASLD Guidance Link

Guidance Statements for HCC Screening in HBsAg‐Positive Persons

  • All HBsAg‐positive patients and high risk adults (see page 1574) with cirrhosis should be screened with US examination with or without AFP every 6 months.
  • There are insufficient data to identify high‐risk groups for HCC in children. However, it is reasonable to screen HBsAg‐positive children and adolescents with advanced fibrosis (F3) or cirrhosis and those with a first‐degree family member with HCC using US examination with or without AFP every 6 months.

Treatment: 

  • In adults: The AASLD recommends peg‐IFN, entecavir, or tenofovir (TDF) as preferred initial therapy for adults with immune‐active CHB
  • In children: The AASLD suggests antiviral therapy in HBeAg‐positive children (ages 2 to <18 years) with both elevated ALT and measurable HBV‐DNA levels, with the goal of achieving sustained HBeAg seroconversion.

Perinatal transmission:

  • The AASLD suggests antiviral therapy to reduce the risk of perinatal transmission of HBV in HBsAg‐positive pregnant women with an HBV‐DNA level >200,000 IU/mL..The only antivirals studied in pregnant women are lamivudine, telbivudine, and TDF. Of these 3 options, TDF is preferred to minimize the risk of emergence of viral resistance during treatment. Interim studies show high efficacy of TDF in preventing mother‐to‐child transmission.
  • The infants of all HBsAg‐positive women should receive immunoprophylaxis (HBV vaccination with or without hepatitis B immunoglobulin, per World Heath Organization and Centers for Disease Control and Prevention recommendations)

Treatment & prevention of HBV reactivation in patients receiving immunosuppressive or cytotoxic drugs (section 6 pages 1577-9)

  • HBsAg and anti‐HBc (total or immunoglobulin G) testing should be performed in all persons before initiation of any immunosuppressive, cytotoxic, or immunomodulatory therapy.
  • HBsAg‐positive, anti‐HBc–positive patients should initiate anti‐HBV prophylaxis before immunosuppressive or cytotoxic therapy.
  • HBsAg‐negative, anti‐HBc–positive patients could be carefully monitored with ALT, HBV DNA, and HBsAg with the intent for on‐demand therapy, except for patients receiving anti‐CD20 antibody therapy (e.g., rituximab) or undergoing stem cell transplantation, for whom anti‐HBV prophylaxis is recommended.

Disclaimer: These blog posts are for educational purposes only. Specific dosing of medications (along with potential adverse effects) should be confirmed by prescribing physician.  This content is not a substitute for medical advice, diagnosis or treatment provided by a qualified healthcare provider. Always seek the advice of your physician or other qualified health provider with any questions you may have regarding a condition.

Tenofovir to Prevent Perinatal Transmission of Hepatitis B

Mother-to-child transmission of hepatitis B virus (HBV) accounts for the majority of cases of chronic HBV infection.  HBV infection affects more than 250 million people worldwide and in many cases results in cirrhosis or hepatocellular carcinoma.  As such, there has been interest in preventing perinatal transmission.

The most recent study (C Jourdain et al. NEJM 2018; 378: 911-23) again showed that tenofovir administration to pregnant women with HBV can prevent transmission.  This study enrolled 331 women.  Key findings:

  • 0% (0/147) infants in the tenofovir group developed HBV infection compared to 2% (3/147) in the control group. This did not reach statistical significance
  • The placebo group received HBV vaccination and hepatitis B immune globulin 1.2 hours and 1.3 hours after birth (median time).  This rapid provision of treatment along with completion of four doses of HBV vaccine likely helped keep the placebo group HBV infection rate low

In the related editorial (G Dusheiko. pg 952-3), it is noted that “current levels of evidence supporting antiviral therapy with TDF [tenofovir] (or possbily lamivudine or telbivudine) to reduce levels of maternal HBV DNA during pregnancy have been accepted by the” AASLD.

Related blog posts:

Preventing Neonatal Hepatitis B Transmission with Tenofovir

A recent study (CQ Pan et al. NEJM 2016; 374: 2324-34) showed that tenofovir administered to mothers starting at 30-32 weeks of gestation lowered the rate of perinatal hepatitis B virus (HBV) acquisition.This was a multi center, open-label, randomized parallel-group design trial.  The maternal tenofovir dose was 300 mg.

Key points:

  • 200 mothers with HBeAg and HBV DNA >200,000 IU/mL in this study
  • 68% achieved an HBV DNA level <200,000 IU/mL (compared with 2% of controls).  Above this threshold has been shown to be associated with increased HBV transmission.
  • 5 of 97 (5%) in the treatment group acquired HBV compared to 18 of 100 in the control group.  However, in the per-protocol analysis which excluded infants born to women who withdrew consent, were lost to follow-up, or discontinued therapy there were 0 cases of transmission (0 of 88).
  • There were no specific safety signals identified in this study.  In the discussion, the authors note that the Antiretroviral Pregnancy Registry which includes data from 4013 women who received tenofovir, the rate of birth defects with TDF was 2.4% compared to the general population rate of 2.7%.

My take: This study provides more evidence that antivirals can prevent perinatal HBV infection.

Related blog posts:

Screen Shot 2016-06-19 at 10.56.30 PM

More on Hepatitis B Treatment in Children

A recent post (New Hepatitis B Treatment Guidelines -AASLD) described the updated treatment recommendations.  When these guidelines were published, a separate review devoted specifically to pediatrics was published (Hepatology 2016; 63: 307-18).

Some of the key points:

  • This pediatric review included 14 studies with 1425 children.  The authors note that 7 of these trials had a high risk of bias.  Also, the studies are limited by relying on surrogate markers of long-term outcomes as clinical outcomes like cirrhosis, HCC, and death are rare in childhood.
  • Among oral agents, entecavir and lamivudine are approved for use in children ≥ 2 years, whereas adefovir and tenofovir are approved for use in children ≥ 12 years.  Both lamivudine and adefovir are associated with frequent development of viral resistance
  • For children with elevated ALT (>1.5 times upper limit of normal [ULN]), treatment is recommended:

9A. The AASLD suggests antiviral therapy in HBeAg-positive children (ages 2 to <18 years) with both elevated ALT and measurable HBV DNA levels, with the goal of achieving sustained HBeAg seroconversion.

Why not treat everyone?

  • Children with immune-tolerant HBV infection (normal or near-normal ALT [< 1.5-2 times ULN] along with high HBV DNA [>10 million IU/mL]), “are not typically candidates for treatment because treatment with any of the currently available drugs has not been demonstrated to improve HBeAg seroconversion compared with no treatment.”
  • Children with ALT >10 time ULN may be in the process of spontaneous seroconversion “and should be observed for several months before treatment” is initiated.
  • “Prolonged treatment with nucleoside or nucleotide analogs in children who are in immune-tolerant phase has not been associated with substantial benefit and carries a risk of developing antiviral drug resistance…An exception may be those…undergoing immunosuppressive therapy.”
Mina Falls, El Yunque Rainforest

Mina Falls, El Yunque Rainforest

New Hepatitis B Treatment Guidelines

Link to full article: Updated Hepatitis B Treatment Guidelines from AASLD

With regard to pediatrics:

9A. The AASLD suggests antiviral therapy in HBeAg-positive children (ages 2 to <18 years) with both elevated ALT and measurable HBV DNA levels, with the goal of achieving sustained HBeAg seroconversion.

“Most studies required ALT elevation (>1.3 times ULN) for at least 6 months with HBV DNA elevations for inclusion. Given that HBV DNA levels are typically very high during childhood (>106 IU/mL), there is no basis for a recommendation for a lower-limit value with respect to treatment. However, if a level <104 IU/mL is observed, therapy might be deferred until other causes of liver disease and spontaneous HBeAg seroconversion are excluded.”

“Duration of treatment with oral antivirals that has been studied is 1-4 years. It may be prudent to use HBeAg seroconversion as a therapeutic endpoint when oral antivirals are used, continuing treatment for an additional 12 months of consolidation, as recommended in adults. It is currently unknown whether a longer duration of consolidation would reduce rates of virological relapse.”

“Children who stop antiviral therapy should be monitored every 3 months for at least 1 year for recurrent viremia, ALT flares, and clinical decompensation.”

9B. The AASLD recommends against use of antiviral therapy in HBeAg-positive children (ages 2 to <18 years) with persistently normal ALT, regardless of HBV DNA level.

Another nice summary of current treatment recommendations: P Martin et al. Clin Gastroenterol Hepatol 2015; 13: 2071-87.  Table 5 lists recommendations for treatment of HBeAg-positive.

  • The main group needing treatment (entecavir, tenofovir, or PEGinterferon alfa-2a) are those with HBV DNA >2000 IU/mL and elevated ALT.  Table 6 lists recommendations for those with HBeAg-negative.  Main group needing treatment are the same (HBV DNA >2000 IU/mL and elevated ALT).
  • With both groups (HBe-Ag negative and positive), “consider liver biopsy or transient elastography” if elevated HBV DNA >2000 and normal ALT.  If histologic disease present, consider treatment.
  • One point the authors make about therapy regards duration: “Historically, HBeAg seroconversion was considered a durable response, and discontinuation of antiviral therapy was recommended after a period of consolidation therapy of 6-12 months from the time of HBeAg seroconversion. However, patients who discontinue therapy …can experience recurrent viremia and ALT flares.  Thus, long-term therapy is justified.”
  • For HBeAg negative patients who have compensated liver disease, loss of HBsAg for 6-12 months may be discontinued from therapy.

Antivirals Reduce Vertical Transmission of Hepatitis B

Chelsea Market, NYC

Chelsea Market, NYC

The latest study that shows antivirals interrupt hepatitis B viral (HBV) transmission from mother-to-infant: H-L Chen et al. Hepatology 2015; 62: 375-86.

In this open-label, non-randomized controlled study from Taiwan, the researchers recruited women to receive tenofovir (TDF) at a dose of 300 mg once a day (n=62), initiated from gestational age 30-32 weeks until 1 month following delivery, and compared them to a control group (n=56).  There were high levels of viremia with HBV DNA ≥7.5 log10 IU/mL. All infants received HBV vaccination and HBIG within 24 hours of birth.

Key findings:

  • Infant transmission of HBV was reduced: at 6 months of age, infant HBsAg positivity was 1.54% versus 10.71%, P=0.0481).  At delivery, HBV DNA positivity was noted in 6.15% compared with 31.48% of the control group.
  • Maternal ALT was improved in the TDF group. ALT elevation more than two times the upper limit of normal for ≥3 months occurred in 3.23% compared with 14.29% of controls.
  • Adverse effects: only mild to moderate (self-limited) gastrointestinal and skin symptoms were noted. No fetal abnormalities were identified.

Bottomline: Antivirals, including both tenofovir and telbivudine, reduce vertical HBV transmission with a favorable safety profile.  The use of antivirals is complementary to standard prevention which consists of providing Hepatitis B immune globulin and Hepatitis B vaccine to infants of HBV-infected pregnant women within 12 hours of birth.

Related blog posts:

Hepatology Update -Summer 2014

Preventing Perinatal Transmission of Hepatitis B Virus (HBV): Hepatology 2014; 60: 468-76.  This nonrandomized study, conducted between 2009-2011 with approximately 700 patients, showed that the rate of perinatal transmission of can be brought down almost to zero by instituting therapy with either telbivudine or lamivudine in the third trimester of pregnancy.  The accompanying editorial (pgs 448-51) indicates that either telbivudine or tenofovir (both pregnancy class B agents with regard to teratogenicity) are preferred agents due to higher barrier to resistance. And, the article suggests starting as early as week 28 (especially if high viral HBV DNA load) and no later than 32 weeks gestation. Other recommendations from editorial include stopping antiviral after delivery in women who intend to breastfeed.

More on coffee: Hepatology 2014; 60: 661-69.  Coffee but not tea conferred protection from cirrhosis mortality.  “Compared to non-daily coffee drinkers, those who drank two or more cups per day had a 66% reduction in mortality risk.”  This study also had an accompanying editorial (pg 464-67) which reviews the biologic plausibility and potential mechanisms.

NASH pathology: Hepatology 2014; 60: 565-75.  The study describes a more precise way to categorize the diagnosis of nonalcoholic steatohepatitis (NASH) using the European Fatty Liver Inhibition of Progression (FLIP) pathology consortium proposal.  The diagnosis of NASH requires the presence of ballooning and lobular inflammation in addition to steatosis.  Using the FLIP approach, diagnosis concordance increased significantly.

Related blog posts: